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Quantification of the effect of energy imbalance on 
bodyweight
Kevin D Hall, Gary Sacks, Dhruva Chandramohan, Carson C Chow, Y Claire Wang, Steven L Gortmaker, Boyd A Swinburn

Obesity interventions can result in weight loss, but accurate prediction of the bodyweight time course requires 
properly accounting for dynamic energy imbalances. In this report, we describe a mathematical modelling approach 
to adult human metabolism that simulates energy expenditure adaptations during weight loss. We also present a 
web-based simulator for prediction of weight change dynamics. We show that the bodyweight response to a change of 
energy intake is slow, with half times of about 1 year. Furthermore, adults with greater adiposity have a larger expected 
weight loss for the same change of energy intake, and to reach their steady-state weight will take longer than it would 
for those with less initial body fat. Using a population-averaged model, we calculated the energy-balance dynamics 
corresponding to the development of the US adult obesity epidemic. A small persistent average daily energy imbalance 
gap between intake and expenditure of about 30 kJ per day underlies the observed average weight gain. However, 
energy intake must have risen to keep pace with increased expenditure associated with increased weight. The average 
increase of energy intake needed to sustain the increased weight (the maintenance energy gap) has amounted to 
about 0·9 MJ per day and quantifies the public health challenge to reverse the obesity epidemic. 

Introduction
While the complexity of the obesity epidemic is 
graphically illustrated by the web of interacting variables 
in the Foresight Obesity Map,1 at the central core of the 
system map lies a fundamental principle of nutrition and 
metabolism: bodyweight change is associated with an 
imbalance between the energy content of food eaten and 

energy expended by the body to maintain life and perform 
physical work.2 Any successful intervention targeting 
obesity (eg, diet, exercise, drugs, bariatric surgery, etc) 
must tip the balance between energy intake and 
expenditure. Therefore, to assess the potential of an 
obesity intervention, its effect on both energy intake and 
energy expenditure over time needs to be quantified. 

Despite the simplicity of this core energy balance 
principle, calculation of the dynamics of energy imbalance 
and translation of the imbalance to a change in 
bodyweight is not straightforward. Widespread official 
recommendations from the National Health Service in 
the UK, the National Institutes of Health and the 
American Dietetic Association in the USA erroneously 
state that reduction of energy intake by about 2 MJ per 
day will result in slow and steady weight loss of about 
0·5 kg per week.3–6 This ubiquitous weight-loss rule (also 
known as the 3500 kcal per pound rule) was derived by 
estimation of the energy content of weight lost7 but it 
ignores dynamic physiological adaptations to altered 
body weight that lead to changes of both the resting 
metabolic rate as well as the energy cost of physical 
activity.8 Unfortunately, this static weight-loss rule 
continues to be used for weight-loss counselling and has 
been misapplied at the population level to predict the 
effect of policy interventions on obesity prevalence.9–12 
While it is generally recognised that the static weight-loss 
rule is overly simplistic, there is a dearth of methods for 
accurate predictions of how changes of diet or physical 
activity will translate into weight changes over time.

We address this issue by using a dynamic mathematical 
modelling approach to human metabolism that 
integrates our knowledge about how the human body 
responds to changes of diet and physical activity. 
Although several mathematical models of human 

Key messages

•	 Health and nutrition organisations have perpetuated the myth that a reduction of food 
intake of 2 MJ per day will lead to a steady rate of weight loss of 0·5 kg per week. 
Because this static weight-loss rule does not account for dynamic physiological 
adaptations that occur with decreased bodyweight, its widespread use at both the 
individual and population levels has led to drastically overestimated expectations for 
weight loss. 

•	 We introduce a validated web-based dynamic simulation model of adult human 
metabolism that predicts the time course of individual weight change in response 
to behavioural interventions. Model simulations can be clinically useful to help set 
personalised weight-loss goals and track adherence to an intervention.  

•	 On the basis of our model, we propose an approximate rule of thumb for an average 
overweight adult: every change of energy intake of 100 kJ per day will lead to an 
eventual bodyweight change of about 1 kg (equivalently, 10 kcal per day per pound 
of weight change) with half of the weight change being achieved in about 1 year and 
95% of the weight change in about 3 years.

•	 Our model simulations show that present limitations on the precision of measuring 
energy expenditure before a diet intervention result in a substantial expected 
inter-individual variability of weight loss, since a given diet results in an uncertain 
degree of energy deficit.

•	 Applications of dynamic simulation models include: prediction of individual weight 
changes resulting from energy balance interventions; assessment of effects of policy 
interventions targeting energy intake or physical activity; estimation of the magnitude 
of the maintenance energy gap that determines the increased energy intake needed to 
maintain higher average bodyweights  as a result of the obesity epidemic.
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metabolism and weight change have been developed in 
the past,13–27 here, we describe some insights about 
weight loss resulting from our research group’s 
experience in developing and validating various 
mathematical models of human metabolism and body-
composition change.7,28–37 Furthermore, we present a 
web-based implementation of one of our dynamic 
mathematical models of human metabolism with which 
readers can do their own simulations. We show how 
this dynamic simulation model of human metabolism 
can predict the time course of weight change at both the 
individual and population levels.

Quantitative physiology of weight change 
in adults
An imbalance between energy intake and energy expen
diture is accounted for by a gain or loss of body fat and 
lean tissue which generally change in parallel.30,38 Thus, 
quantification of weight change requires both a 
dynamic assessment of how energy expenditure 
changes over time as well as how energy imbalances 
are partitioned between storage or mobilisation of body 
fat and lean tissue. The energy content per kg change 

of body fat is 39·5 MJ and 7·6 MJ for a kg of lean mass.7 
Thus, to lose the same mass of fat as lean tissue 
requires about a 5-fold greater deficit in net energy. 
Changes of body fat and lean tissue are related by a 
non-linear function of the initial body fat mass such 
that people with higher initial adiposity partition a 
greater proportion of a net energy imbalance towards 
gain or loss of body fat versus lean tissue than do 
people with low initial adiposity.30,38 The physiological 
mechanisms underlying this non-linear relation are 
complex and involve the regulation of metabolic fuel 
selection,31,34 but the net result can be described by a 
simple equation first presented more than 30 years 
ago38 and subsequently updated and validated.30,37

Although less energy is stored in lean tissue than in 
body fat, lean tissue is more energetically expensive to 
maintain than is body fat and contributes more to the 
body’s overall energy expenditure rate.39 Thus, energy 
partitioning also contributes to changes in the energy 
expenditure rate of the body, particularly the resting 
metabolic rate and the energy cost of tissue deposition 
and turnover. These factors, along with the energy cost of 
physical activity, have recently been incorporated in 

Figure 1: Predicted bodyweight and fat-mass changes by use of a dynamic simulation model of human metabolism 
Error bars are ±1SD. (A) Predicted and measured average changes of bodyweight and fat mass during 25% caloric restriction in 12 overweight men and women.80 
(B) Predicted and measured average changes of bodyweight and fat mass during 12·5% caloric restriction plus exercise in 12 overweight men and women.80 
(C) Predicted and measured average changes of bodyweight and fat mass during a very low energy liquid diet followed by weight maintenance diet in 12 overweight 
men and women.80 (D) Daily weight changes in two obese women during a very low energy liquid diet.81 Model predictions are shown as solid blue curves and the 
dotted curves illustrate the uncertainty of the predictions based on the inherent imprecision of estimating baseline energy expenditure, assuming an uncertainty 
in the initial energy expenditure rate of ±1 MJ per day. (E) Average weight change during a 30-day fast in 18 obese men and (F) 58 obese women.82 
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validated mathematical models of human metabolism 
and body composition change for adults.28,29,31,33,36 The 
webappendix (pp 1–3) describes a non-linear dynamic 
model that captures the important physiology. 

Modelling of the dynamics of weight change 
Figure 1A–C shows our model simulations of weight 
change and body fat change along with experimental 
data from the CALERIE study80 that investigated 
6 months of 25% caloric restriction, 12·5% caloric 
restriction plus exercise, and 3 months of a liquid diet 
of 3·7 MJ per day followed by a period of weight 
maintenance. The close agreement between the model 
predictions and the data provides some validation of 
the mathematical model, since these data were not used 
for model development. Figure 1D shows another 
validation study, in which two obese women were 
provided with liquid diets of about 3·3 MJ per day in an 
inpatient setting.81 The model accurately reproduced 
the different rates of weight loss resulting from the 
differing predicted energy expenditure rates in these 
women. Similarly, figure 1E, F shows the simulated and 
measured weight changes over the course of a 30 day 
fast in obese men and women, respectively.83 Again, the 
simulated weight change dynamics agree reasonably 
well with the data thereby providing some confidence 
that the model accurately captures the quantitative 
physiology of weight loss.

Calculation of the energy deficit generated by a given 
diet requires knowledge of the energy needed to maintain 
the baseline bodyweight. Unfortunately, we cannot 
measure the initial energy requirements of a free-living 
individual with a precision better than about 5%.83 More 
typically, the initial uncertainty will be much greater than 
5% unless the specialised and expensive doubly-labelled 
water method is used to measure energy expenditure 
before the intervention. The uncertainty of the baseline 
energy requirements translates to an expected inter-
individual variability of weight loss even if adherence to 
the prescribed diet is perfect. This is a fundamental 
limitation on our ability to precisely calculate the 
predicted bodyweight time course of an individual.

Figure 2A shows the predicted bodyweight time course 
of a 100 kg (220 lb) sedentary man following a step 
reduction of energy intake by 2 MJ per day (480 kcal per 
day). This constant diet perturbation was predicted to 
result in a bodyweight plateau at about 75 kg (165 lb) over 
a 10-year simulation taking roughly 1 year to reach half of 
the maximum weight loss and reaching 95% of this value 
after about 3 years. The dashed curves on figure 2A 
illustrate the ±4 kg weight-loss variability after several 
years and show that even seemingly small initial 
uncertainties can lead to large expected long-term inter-
individual variability of weight change. This expected 
variability will be exacerbated by imperfect adherence to 
the intervention as well as any differences in physiological 
variables between individuals.

By contrast with our dynamic model simulations, the 
popular dieting rule3–6 predicts that the same 2 MJ per day 
reduction of energy intake will result in a linear decrease 

Figure 2: Predicted long-term bodyweight change trajectories 
(A) Bodyweight time course of a 100 kg man following a step decrease in dietary 
energy intake of 2 MJ per day. The dashed curves indicate the expected 
inter-individual variability of weight loss due to imprecise estimates of the initial 
state of energy balance (arising solely from an initial uncertainty in the energy 
expenditure rate of ±300 kJ per day or about 5%). (B) Differences of weight 
change between people with different initial body composition. People with a 
higher initial body fat mass lose more weight but the time to reach the plateau is 
longer. (C) Predicted effect of a step change of physical activity compared with 
an energy equivalent step change of dietary energy intake. Physical activity has 
an effect on both the magnitude and the timescale of bodyweight change.
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of bodyweight over time with 22 kg lost in the first year 
(not shown), which is about 100% greater weight loss 
than our model prediction. This result shows the 
magnitude of the error introduced by ignoring dynamic 
changes of energy expenditure with weight loss. Moreover, 
it might help explain why even the most diligent followers 
of diet programmes often fail to reach weight loss goals 
that were set by use of the static weight-loss rule. Although 
practitioners of the erroneous dieting rule generally 
acknowledge that weight loss will slow over time, they 
had no way to estimate the weight-loss time course.

The timescale to reach a new bodyweight steady state is 
mathematically given by the effective energy density of 
the change in body tissue divided by the slope of the 
relation between the total energy expenditure rate and 
weight change (webappendix pp 3–4).28 Both of these 
factors are influenced by the initial body composition of 
the individual, and, therefore the bodyweight time course 
also depends on the initial body composition.33 Figure 2B 
shows the predicted change in bodyweight for the same 
step reduction of daily energy intake of 2 MJ per day in 
both a 100 kg man and an 80 kg man that differ in their 
initial body composition. Although the weight lost over 
the first year is similar, the greater initial fat mass of the 
100 kg man results in a larger proportion of weight loss 
from body fat versus lean tissue than that in the 80 kg 
man. Because the energetically expensive lean tissue 
mass is preserved, the 100 kg man achieves a greater 
eventual weight loss than the initially lighter man because 
of the relative preservation of energy expenditure. 
However, to reach half of the maximum weight change 
takes longer for the 100 kg man than it does for the 80 kg 
man. Conversely, increased daily energy intake will result 
in greater weight gain in the 100 kg man than in the 80 kg 
man and a greater fraction of the weight change will be 
body fat (not shown).

These different bodyweight predictions at steady state 
result from the non-linear relation between initial mass 
of body fat and the fraction of weight change accounted 
for by change in lean tissue mass.30 Thus, the person with 
more initial body fat has a greater fraction of their weight 
change attributable to changes of body fat versus changes 
of lean tissue than does a person with less initial body fat. 
Since body fat contributes less than lean tissue to overall 
energy expenditure,39 the person with higher initial body 
fat will lose a greater amount of weight to achieve a new 
state of energy balance.37

Physical activity increases energy expenditure and can 
therefore cause weight loss, assuming no compensatory 
changes in energy intake. But does an increase of physical 
activity necessarily lead to the same weight loss as an 
energy-equivalent decrease of food intake? Figure 2C 
compares a step change of physical activity (ie, running 
roughly an additional 20 km per week at a moderate pace 
with an initial energy cost of about 1·2 MJ per day) with 
an energy-equivalent decrease of energy intake in the 
simulated 100 kg man. Such a relatively modest increase 

of physical activity expenditure results in slightly more 
rapid and greater predicted weight loss compared with 
an energy-equivalent reduction of food intake (figure 2C). 
However, as the magnitude of each intervention 
increases, there is a point when diet leads to greater 
weight loss than does physical activity. Increased physical 
activity versus an initially energy-equivalent reduction of 
food intake leads to differing predicted weight loss 
because the energy expenditure of added physical activity 
is proportional to bodyweight itself.71 Therefore, by 
contrast with the assumption that a calorie is a calorie 
with respect to physical activity versus diet, our model 
shows that energy-equivalent initial changes of physical 
activity versus food intake can lead to differences in 
weight change, but experimental confirmation of this 
result would be difficult.

We have not yet modelled the potential effect of exercise 
on change of body composition although this effect is 
likely to be modest for most aerobic exercises. More 
importantly, our model simulations assume that 
changing physical activity does not alter energy intake 
and vice versa. However, there is evidence that increased 
physical activity results in compensatory changes of 
energy intake that act to attenuate the energy imbalance84,85 
and that the extent of compensation has high individual 
variability.86 Conversely, changes of energy intake might 
result in compensatory adaptation of non-exercise 
physical activity, which also has a high degree of 
individual variability.87 These compensatory feedback 
relations between energy intake and physical activity 
clearly warrant further investigation. Because our 
simulation model predicts the expected responses in the 
absence of these feedback mechanisms, we suggest that 
the difference between the measured and model-
predicted weight change can be used to quantify the 
magnitude of compensation. 

Setting goals for weight loss and weight-loss 
maintenance
The long timescale for weight loss in obese and 
overweight individuals has important implications for 
clinical weight-loss interventions. For example, imple
mentation of a weight-loss programme in various stages 
so that a goal weight can be achieved in an abbreviated 
timeframe might be desirable. The first stage might 
consist of a more aggressive temporary change in 
behaviour to achieve the weight loss goal in a specified 
time, after which the intervention can be relaxed to a 
permanent behavioural change to avoid the weight regain 
that typically occurs.88,89

Figure 3 shows an example of such a two-phase 
programme of weight loss. A screen-shot of our web-
based model simulating the required reduction of dietary 
energy intake of 5 MJ per day (1200 kcal per day) from a 
baseline of 12·7 MJ per day (3000 kcal per day) for a 
sedentary 100 kg (220 lb) man to lose 20 kg (44 lbs) in 
6 months. This schedule was followed by a permanent 
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reduction of energy intake to a value of 10·9 MJ per day 
(2600 kcal per day) to maintain the weight loss. Physical 
activity at baseline could be roughly estimated by 
answering two simple questions about work and leisure 
physical activities,90 and the simulations assumed no 
change in physical activity through the time course of the 
intervention. The effects of a weight-loss programme 
that includes modification of physical activity from its 
baseline value can also be simulated with the web-based 
model. By modifying the initial conditions of the model 
to represent an individual person, the simulator can be 
used for personalised goal setting and behavioural 
intervention planning. 

The simulation model can also display the range 
of expected individual weight-loss trajectories corres
ponding to the initial uncertainties in energy imbalance 
described before. If the bodyweight time course of a person 
falls substantially outside the expected trajectory range, 
then this could indicate non-compliance to the intervention. 
Alternatively, although the mathematical model variables 
seem to adequately represent the metabolic responses of 
an average person with a given initial body composition, 
an individual might have substantially different physio
logical variables that cause the bodyweight to fall well 
outside the expected trajectory range. For example, some 
individuals could have genetic differences causing them to 

respond to a reduced energy intake with a suppression of 
energy expenditure greater than average, which would 
result in less weight loss than expected. 

Assessment of obesity interventions and 
patients’ adherence
To assess the mechanisms and comparative effectiveness 
of various obesity treatments requires understanding 
their long-term effect on both energy intake and energy 
expenditure. However, a major difficulty in the field of 
obesity research is that current methods for assessment 
of free-living food intake (eg, 24 h recall, food frequency 
questionnaires, diet diaries, etc) are known to be 
inaccurate.91,92 Therefore, to interpret the results of 
various diet trials (panel) is difficult, as is to determine 
whether diet adherence is responsible for the typical 
failure to maintain substantial weight loss over extended 
time periods.93,94 For example, outpatient weight-loss 
interventions typically result in maximum weight loss 
after 6–8 months followed by gradual weight regain over 
subsequent years (figure 4A).89 A common explanation of 
the weight-loss plateau at 6–8 months is that a metabolic 
adaptation occurs such that energy expenditure decreases 
to match energy intake thereby halting further weight 
loss.95–98 Weight regain then occurs as people slowly relax 
their adherence to the diet that has stopped producing 
weight loss. 

Although our mathematical model includes the 
physiology of metabolic adaptation to reduced energy 
diets, the simulated weight-loss plateau occurs on a 
much longer timescale. Therefore, assuming perfect 
adherence to a constant reduction of energy intake, the 
deviation between the model-simulated weight plateau 
that occurs after several years and the observed plateau 
at 6–8 months challenges the usual interpretation of the 
weight-loss, plateau, and regain trajectory described 
before. Perhaps the difference between the model 
simulation and the data is an indication that the model 
does not appropriately capture the energy metabolism 
dynamics on long timescales in free-living individuals. 
But because weight loss in controlled feeding studies is 
almost linear over 6 months (figures 1A and 1B in 
agreement with the model), a substantial slowing of 
metabolism shortly after 6 months would be needed to 
halt weight loss and thereby explain the typically observed 
plateau at 6–8 months. Rather, it is more likely that 
adherence to the prescribed diet was not constant over 
this timeframe—an interpretation supported by previous 
results from studies showing that total energy 
expenditure is much higher than self-reported energy 
intake at the weight-loss plateau.96 

We investigated what change of energy intake would be 
needed to simulate a typically observed weight-loss and 
regain trajectory (figure 4A).31 The results show that the 
observed weight change could only have occurred if 
adherence to the initial reduction of energy intake by 
about 3·3 MJ per day (800 kcal per day) was rapidly and 

Figure 3: Web-based simulation for setting goals for weight loss and weight-loss maintenance 
The panel located on the top-left part of the simulator window specifies the baseline characteristics of the 
individual person or population average values. This example selects a 100 kg, 180 cm tall, 23-year-old man. The 
top-middle panel specifies the goal weight (80 kg) and desired time interval to achieve the goal (180 days). 
Running the simulation displays the required changes of dietary energy intake to meet the goal and then 
maintain the weight change. The simulated bodyweight trajectory is graphically displayed in the lower panel. 
Users can also modify the physical activity to examine how combinations of diet and exercise interventions can 
achieve the same goal.
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progressively relaxed, such that the patients returned to 
their original weight-maintenance diet within the first 
year, and kept this diet for the remainder of the 3-year 
simulation (figure 4B). 

Our model’s predicted pattern of free-living energy 
intake raises several interesting issues. First, after the 
initial reduction in energy intake resulting from a dietary 
intervention, a progressive increase of energy intake 

Clinicians are often asked to opine on a dizzying array of diets 
for weight loss.  Theoretically, the energy balance principle 
would seem to suggest that all reduced energy diets must lead 
to equivalent weight loss. However, there have been several 
randomised clinical trials comparing diets that differ in 
macronutrient composition40–59 and many find that low 
carbohydrate diets lead to greater weight loss, at least in the 
short term. There are three possible reasons why some reduced 
energy diets may lead to more weight loss than others. 

First, energy is stored in the body as protein, fat, and glycogen, 
which is a form of carbohydrate. Any imbalance between the 
intake and use of these macronutrients will lead to an alteration 
of body composition since the stored protein, fat, or glycogen 
must change to compensate the imbalance. The energy stored 
per unit mass of carbohydrate, fat, and protein varies 
considerably, especially when accounting for the intracellular 
water associated with stored glycogen and protein.7 Furthermore, 
dietary carbohydrates have an effect on renal sodium excretion 
via insulin,60 which results in concomitant changes of extracellular 
fluid. Therefore, weight changes are expected when the 
macronutrient composition of the diet is altered, even when the 
energy content of the diets are held constant.

However, apart from a few notable exceptions,61–63 most results 
from inpatient studies with adequately controlled diets have 
shown little effect of diet composition on bodyweight and 
fat-mass changes.64–69 These results therefore show the 
exquisite regulation of metabolic fuel selection to adjust to the 
macronutrient content of the diet. Far from being an obvious 
consequence of the first law of thermodynamics (often 
expressed as “a calorie is a calorie”),70 the observation that 
bodyweight and composition seem to depend little on the 
macronutrient composition of the diet requires a robust  
physiological control system to adapt metabolic fuels to the 
diet composition.33 Understanding of the complex physiological 
mechanisms underlying metabolic fuel selection is a subject of 
active investigation.29,31,33,34 

The second reason that diet composition might affect weight 
loss is that the body’s energy-expenditure rate might depend 
on the macronutrient mix of the diet. For example, 
consumption of dietary protein is known to elicit a substantially 
larger increment of energy expenditure for several hours after a 
meal than does dietary fat or carbohydrate.71 Furthermore, the 
fluxes through various energy-requiring metabolic pathways 
depend on the macronutrient composition of the diet. For 
instance, the breakdown and resynthesis of body fat requires 
eight molecules of ATP per molecule of triglyceride72 and the 
flux through this pathway is strongly influenced by dietary 
carbohydrate via insulin’s inhibition of lipolysis.73 Similarly, 

other metabolic processes such as gluconeogenesis, de novo 
lipogenesis, and protein turnover all require energy and their 
rates can be substantially influenced by diet composition. 

Calculation of the net effect of diet changes on overall energy 
expenditure requires the use of mathematical models that 
simulate how the magnitudes of these various metabolic fluxes 
are altered by changing diet composition.29,31 Despite the 
attractive theoretical possibility of a substantial metabolic 
advantage of one diet over another,74–76 the overall calculated 
effect of diet composition on total energy expenditure seems to 
be relatively modest, especially when dietary protein is 
unchanged. Specifically, our computational model of 
macronutrient balance31 predicts that large isocaloric exchanges 
of dietary carbohydrate and fat result in changes of energy 
expenditure of less than 400 kJ per day, which corresponds to a 
difference in body fat of roughly 10 g per day. To detect such a 
difference in body fat with present body-composition methods 
would require a sustained diet change of more than 100 days. 
These model results agree with experimental findings70,77 and, 
therefore, the assumption that a “calorie is a calorie” is a 
reasonable first estimation as far as energy expenditure is 
concerned over short-time periods. Nevertheless, even small 
differences in energy expenditure and energy partitioning can 
theoretically lead to substantial differences of bodyweight and 
composition if the diets are maintained over long-time periods. 
This possibility requires further investigation.

Finally, some diets can lead to reduced hunger, improved satiety, 
and better overall diet adherence during a weight management 
intervention. While much work has examined the effect of diet 
composition on short term measures of hunger and satiety,78,79 
the well-known difficulties in measurement of food intake in 
free-living people over extended time periods currently prohibits 
adequate comparison of different diets. This issue makes the 
interpretation of most diet trials40–59 particularly difficult since the 
reported energy and macronutrient intakes are almost certainly 
erroneous. Diet adherence is likely to be more transient than is 
generally believed and might underlie the typical pattern of 
weight-loss, plateau, and regain observed in outpatient diet 
interventions (see main text).

In summary, changes in the dietary macronutrient composition 
result in rapid physiological adaptations that strive to match 
metabolic fuel selection to the diet. These adaptations minimise 
changes of body composition and energy expenditure. As a 
result, all reduced energy diets have a similar effect on body-fat 
loss in the short run. However, little is known about the 
long-term effect of diets that vary in macronutrient composition 
since present methods prohibit quantitative assessment of food 
intake and diet adherence in an outpatient setting. 

Panel : Does diet composition matter?
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occurs for many months before it finally meets the energy 
expenditure rate corresponding to the bodyweight 
plateau. In other words, weight loss continues for many 
months at the same time that the average energy intake 
is slowly increasing. The dieter might then incorrectly 
infer that adherence is not essential for continuing 
weight loss when, in fact, impending weight regain has 
already been set in motion. The slow timescale for weight 
change is responsible for the gradual weight regain over 
many years despite the fact that the original lifestyle was 
resumed within the first year. Interestingly, energy intake 
levels return to the original baseline diet only a few 
months after weight hits a minimum and starts 
increasing. We do not yet know the mechanisms that 
drive this predicted pattern of average energy intake 
during a weight-loss programme, but this clearly warrants 
further study. 

The observed average weight regain at 3 years of all but 
about 3 kg of the lost weight contrasts with the expected 
weight loss of more than 12 kg that our model predicts 
would have resulted had the individuals eaten their self-
reported energy intake (data not shown).89 These 
diverging results highlight the well-known deficiencies 
in the assessment of free-living energy intake,91 making 
the results of clinical trials comparing various diet 
interventions very difficult to interpret. To address this 
difficulty, mathematical models of human metabolism 
have recently been proposed to estimate changes of free-
living energy intake by use of longitudinal measurements 
of bodyweight as model inputs.31,36,99,100

Modelling average weight change in a 
population
The obesity epidemic is measured at the population level, 
including the bodyweights of individuals within the 
population. Accordingly, it is important to develop models 
that can quantitatively relate individual changes in energy 
balance and bodyweight to population-level effects. 
Modelling of the dynamics of the entire population 
distribution over time is complex and beyond the scope 
of this report. However, by taking the average of the 
mathematical model over the US adult population, we 
managed to calculate the energy imbalance dynamics 
underlying the observed change of the average adult 
bodyweight.36 Fortunately, averaging over a large 
population reduces the previously described measure
ment uncertainty in the initial state of energy balance to 
a negligible value and results in a more precise estimate 
of the average weight change than can be obtained for an 
individual. Furthermore, whereas irregular jumps might 
characterise the energy intake or physical activity patterns 
in some individuals (eg, the step changes simulated 
previously), these transitions in behaviour will be 
smoothed out when averaged over the population. 

An important caveat exists when populations are 
considered to be the sum of individuals. Adults within a 
population, on average, gain weight as they get older, at 
least up to the age of about 60 years. Thus, a longitudinal 
study of adults will inevitably show weight gain, whereas 
the population as a whole (as judged by serial cross-
sectional surveys) might be weight stable, increasing in 
weight, or even decreasing in weight. This is typically a 
result of lean, young people entering the adult population 
at the same time as fatter, older people leave the population 
by dying. Nevertheless, averaging the mathematical 
model over a population can give important insights into 
the energy imbalances responsible for the rise of obesity. 

Over the past 30 years, the average adult bodyweight in 
the USA has linearly increased since 1978 (figure 5A).101–103 
By using the average adult bodyweight in 1978 as the 
initial condition of our model, we quantified the energy 
balance dynamics underlying this observed average 
weight gain. Figure 5B plots the simulated progressive 
increase of overall daily energy intake and energy 

Figure 4: Energy balance dynamics underlying the typical out-patient weight loss, plateau, and regain trajectory 
(A) A typical range of bodyweight trajectories for patients engaged in an out-patient weight-loss programme. The 
solid blue curve is the mean bodyweight time course and the dashed curves indicate the expected inter-individual 
weight loss variability due to a ±0·65 MJ per day imprecision in the estimate of the initial energy expenditure rate. 
Datapoints are mean ±SD from Svetkey and colleagues.89 (B) The model predicted average energy intake (black) 
and energy expenditure (red) rates underlying the typical bodyweight loss and regain trajectory.
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expenditure underlying the average bodyweight trajec
tory shown in figure 5A, assuming no change of average 
physical activity. 

The small difference between the average daily energy 
intake and expenditure rates shown in figure 5B 
quantifies the persistent daily energy imbalance that 
amounts to about 30 kJ per day. This small average daily 
energy imbalance is equivalent to the average increase of 
energy stored in body fat and lean tissue divided by the 
time taken to store this energy. This small “energy 
imbalance gap” underlying the development of obesity at 
a population level was first identified by Hill and 
colleagues104 (although not referred to by this term). This 
observation led to the “small changes approach”104,105 to 
address the obesity epidemic based on the idea that only 
a small average daily energy imbalance underlies the 
population-wide increase of average bodyweight.105 Thus, 
it is argued that halting the rise of obesity prevalence 
requires only small changes. 

However, reversal of obesity will require substantially 
larger changes, a fact fully acknowledged by Hill and 
colleagues.105 By contrast with the small energy imbalance 
gap, the “maintenance energy gap” (previously referred to 
as the energy flux gap)106 is defined as the increased 
average energy intake rate to maintain the final bodyweight 
compared with the initial bodyweight. The maintenance 
energy gap accounts for the changes of energy expenditure 
that occur with weight gain. Figure 5B shows that the 
maintenance energy gap underlying the obesity epidemic 
in adults in the USA is about 0·9 MJ per day (220 kcal per 
day) when 2005 data are compared with 1978 data.35,36 This 
estimate is similar to an analysis of US energy intake 
trends107 showing an increase of about 0·8 MJ per day 
(190 kcal per day). Measurement error in intake or a 
decrease of physical activity over the same period could 
contribute to the small differences in these estimates. 
Nevertheless, the large change of average energy intake 
characterises the magnitude of the public health challenge 
to reverse obesity rates back to 1970s values. Our updated 
estimate of the maintenance energy gap underlying the 
increased average US adult bodyweight is slightly less 
than our previous estimates106,108 as a result of some issues 
with linear regression methods35,109 that have now been 
corrected. It is important to note that much larger changes 
are needed for obese individuals to return to the average 
bodyweight of the 1970s. For example, an adult with a 
BMI higher than 35 kg/m², representing 14% of the US 
population,102 needs a change greater than 2 MJ per day 
(500 kcal per day). 

Figure 5C plots our model’s predicted average energy 
expenditure rate as a function of average bodyweight over 
the course of the 30-year weight gain along with energy 
expenditure data obtained in a cross-sectional sample with 
the doubly-labelled water method.106 The simple regression 
line relating the energy expenditure data to bodyweight 
has a remarkably similar slope compared with the dynamic 
model prediction (94±6 kJ/kg per day for linear regression 

Figure 5: Simulating the increasing average adult bodyweight gain of the US 
population 
(A) Average simulated adult bodyweight along with data from the NHANES. (B) The 
simulated linear increase of average energy intake and energy expenditure 
underlying the observed increase in average bodyweight. The energy imbalance gap 
is the small difference between the energy intake and expenditure rates. The 
maintenance energy gap is the change of energy intake required to maintain the 
final bodyweight compared with the initial weight. (C) Plotting of the simulated 
average energy expenditure rate versus the average bodyweight gives the red curve 
with a slope very close to that of the regression line fit to cross-sectional energy 
expenditure data. The slope indicates that every 100 kJ per day increment of energy 
intake would eventually lead to about 1 kg change of average bodyweight. 
NHANES=National Health and Nutrition Examination Survey.
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versus the dynamic model slope of 100 kJ/kg per day). The 
magnitude of the slope determines the magnitude of 
average steady-state bodyweight change for a given dietary 
intervention. This result, along with the characteristic 
timescale described above, provides a simple approximate 
rule of thumb for prediction of the average impact of an 
intervention affecting energy intake: every permanent 
change of energy intake of 100 kJ per day will lead to an 
eventual weight change of about 1 kg (equivalently, 10 kcal 
per day per pound of weight change) and it will take about 
1 year to achieve half of the total weight change and 95% 
of the total weight change will result in about 3 years. 

Simulation of the potential effect of policy 
interventions to address obesity
By modelling the magnitude of the maintenance energy 
gap we can begin to estimate the potential effect of 
population-wide policy interventions. For example, the 
US Department of Agriculture (USDA) recently issued a 
report12 describing the potential effect on obesity 
prevalence of taxing caloric sweetened beverages. The 
authors estimated that a 20% tax would result in a 
decrease of overall energy intake by about 170 kJ per day 
(40 kcal per day). Using the rule that every change of diet 
of 2 MJ per day will result in about 0·5 kg of weight loss 
per week, the authors incorrectly predicted an average 
weight loss of about 1·8 kg per year. Extrapolating this 
static model prediction over 5 years results in a weight 
loss of about 10 kg bringing the average adult bodyweight 
down to values characteristic of the 1970s (figure 6), 
suggesting that a tax on sugar-sweetened beverages alone 
might be sufficient to reverse the US obesity epidemic. 
By contrast, our dynamic simulation model predicts that 
the USDA estimated decrease of average energy intake 

from taxing caloric sweetened beverages would result in 
about 1·8 kg (4 lb) of average weight loss after 5 years and 
about 1 kg (2·2 lb) of weight loss after 1 year (figure 6). In 
collaboration with the USDA, we recently used our 
dynamic simulation model as part of an income-stratified 
analysis of taxing sugar sweetened beverages and its 
potential effect on overweight and obesity prevalence in 
US adults.110

These results have important implications for gauging 
the ability of a policy change to mitigate the obesity 
epidemic. To better inform policy decisions, a dynamic 
model should be used to estimate both the magnitude 
and time course of expected weight change resulting 
from a given policy’s predicted effect on energy balance 
rather than the inappropriate use of the 3500 kcal per 
pound rule.9,11,12 Alternatively, our proposed rule of thumb 
that 100 kJ per day per kg of weight change can be applied 
to estimate the steady-state weight differences between 
the presence and absence of an intervention—as was 
recently done to assess front-of-pack traffic-light nutrition 
labelling and a “junk food” tax.111 While even modest 
weight loss can be associated with substantial health 
benefits,112,113 we suggest that unrealistic weight loss 
expectations obtained by erroneous use of the static 
dieting rule should be replaced by our methods to assess 
other population-wide and more targeted obesity 
prevention interventions. Of course, our methodology 
only addresses the energy balance core of the obesity 
systems map1 and does not account for the dynamic 
complex web of interacting variables that might respond 
and adapt to policy level interventions.

Conclusions 
This report describes how mathematical modelling of 
human metabolism has resulted in several important 
insights about weight change in adults. We have shown 
how inter-individual weight-loss variability resulting from 
the same intervention can be caused by differences in the 
initial body composition between individuals as well as 
the uncertainty about the baseline energy expenditure. 
We also showed that the timescale of human weight 
change is long and depends on the initial body 
composition. Furthermore, changes of energy intake can 
theoretically result in different weight changes compared 
with initially energy-equivalent changes of physical 
activity expenditure. 

Although our mathematical models have been validated 
in various situations,7,29–32,34,36,37 dynamic simulation models 
have not yet been widely adopted for clinical weight 
management or informing policy discussions. Thus, we 
have created a web-based dynamic model to allow users 
to easily perform simulations. Our web-based instrument 
represents a substantial step forward from previously 
available predictions of weight change that rely on the 
erroneous use of common dieting rules.3–6 The bodyweight 
simulation tool will be updated to reflect continuing 
improvements in the model.

Figure 6: Prediction of the effect of a policy intervention on the population 
average weight 
Simulated average weight change of a 20% tax on caloric sweetened beverages. 
The average energy-intake change was specified in a recent report by the US 
Department of Agriculture (USDA)12 and initial population average weight of 
81 kg corresponded to the most recent measurement in the USA. Rather than 
produce the progressive weight loss predicted by the static model, the same 
decrease of energy intake led to a simulated modest weight-loss plateau.
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An important limitation of our simulations is that our 
model requires estimation of how an intervention affects 
both energy intake and physical activity. Once these 
parameters are specified, the model assumes perfect 
adherence to the intervention and does not automatically 
simulate any compensatory effects (eg, increased energy 
intake at the start of an exercise programme84,85). Although 
limited adherence and compensatory effects are likely to 
have a prominent role in the determination of overall 
weight change, their potential effect can be simulated by 
explicitly testing various hypotheses in the model. 

We previously showed good agreement between the 
model’s prediction of the relation between weight change 
and energy expenditure obtained with 24-h indirect 
calorimetry in Pima Indians after a 3-year follow-up.36,114 
However, additional longitudinal validation studies over 
extended periods are needed, ideally with the doubly-
labelled water method to assess longitudinal changes of 
free-living total energy expenditure.  

Our mathematical model was developed to accurately 
simulate the physiology of weight change in adults. A 
similar model for children and adolescents is not yet 
available. The same notions of the energy imbalance 
gap and the maintenance energy gap can also apply to 
children, and previous mathematical models have 
focused on the quantification of the energy imbalance 
underlying the development of childhood obesity in 
various populations.17,115,116 However, these models are 
limited because they cannot accurately predict how a 
child’s bodyweight trajectory will change in response to 
an intervention, because they do not account for the 
dynamic energy partitioning between fat and lean tissue 
during various phases of growth.117,118 Future work must 
address this issue.

In summary, accurate mathematical models of human 
metabolism are needed to properly assess the quantitative 
effect of interventions at both the individual and 
population levels. Widespread past use of erroneous 
rules for estimation of human weight change have led to 
unrealistic expectations about the potential effect of both 
behavioural and policy interventions. By modelling the 
quantitative physiology of human weight change and 
providing easy access to a web-based simulation tool, we 
believe that health-care and health-policy practitioners 
will be in a position to make better informed decisions.
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